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ABSTRACT: Protein aggregation is associated with many debilitating diseases including Alzheimer’s, Parkinson’s, and light-
chain amyloidosis (AL). Additionally, such aggregation is a major problem in an industrial setting where antibody therapeutics
often require high local concentrations of protein domains to be stable for substantial periods of time. However, despite a
plethora of research in this field, dating back over 50 years, there is still no consensus on the mechanistic basis for protein
aggregation. Here we use experimental data to derive a mechanistic model that well describes the aggregation of Titin I27, an
immunoglobulin-like domain. Importantly, we find that models that are suitable for nucleated fibril formation do not fit our
aggregation data. Instead, we show that aggregation proceeds via the addition of activated dimers, and that the rate of aggregation
is dependent on the surface area of the aggregate. Moreover, we suggest that the “lag time” seen in these studies is not the time
needed for a nucleation event to occur, but rather it is the time taken for the concentration of activated dimers to cross a
particular solubility limit. These findings are reminiscent of the Finke−Watzky aggregation mechanism, originally based on
nanocluster formation and suggest that amorphous aggregation processes may require mechanistic schemes that are substantially
different from those of linear fibril formation.

■ INTRODUCTION

Protein aggregation is at the root of a number of costly,
debilitating diseases.1,2 It is also a major concern during
purification, formulation, and manufacture of therapeutic
protein products where high protein concentrations are
required to be stable for substantial periods of time (see ref 3
and references therein). Although the first kinetic studies of
protein aggregation occurred over 50 years ago, there is still no
consensus as to the underlying mechanisms that control these
aggregation processes. Indeed, a recent review of the literature
suggests that there are at least five fundamentally different
classes of proposed mechanism, each comprising several
variants.4 Most of these mechanisms are based on fiber
formation (natural or amyloid) and thus focus on the addition
of monomers to the ends of a growing linear polymer.5−9

However, it is becoming increasingly apparent that it may be
the prefibrillar, often amorphous, aggregates that are the most
toxic species in vivo.10−13 Any rational intervention in the
accumulation of these amorphous species will require a detailed

understanding of their pathways of formation (and degrada-
tion), which are likely to be fundamentally different to the
mechanisms of fibril growth.14 Recently, Stranks et al.
considered amorphous aggregate growth in three dimensions,
limited by aggregate surface area.15 This is similar to an
approach by Finke and Watzky, who considered a two-step
mechanism of slow continuous nucleation followed by typically
fast, autocatalytic surface growth.16 Both methods were very
successful at fitting the data; however, in each case the results
were largely empirical and gave no mechanistic insight into the
underlying physical processes.
In this paper, we use experimental data to derive a

mechanistic model, from first principles, that well describes
the aggregation kinetics of the 27th immunoglobulin-like
domain from human cardiac titin (I27); i.e., we identify the
kinetically relevant species and reactions necessary to describe
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this aggregating system. The importance of such an analysis is
that it enables us, for the first time, to present a model for
amorphous aggregation comprising a number of components,
each of which may be explicitly challenged by mutation, solvent
conditions, or chemical additives. We show that aggregation
proceeds via the addition of activated dimers, and that the rate
of aggregation is dependent on the surface area of the
aggregate, as seen previously for nanocluster formation.17

Moreover, we suggest that the “lag time” seen in these studies is
not the time needed for a nucleation event to occur, but rather
it is the time taken for the concentration of activated dimers to
cross a particular solubility limit.
Surprisingly, our studies also brought to light some concerns

about standard methods for collection and presentation of
aggregation data. We show that, with correct experimental
procedures, turbidity measurements can be an accurate measure
of the concentration of aggregate present. In the literature,
however, raw aggregation data are often normalized to an
extrapolated end-point, which we show could be entirely
misleading and can mask the fact that the aggregation process is
reversible and operates over a very broad range of time scales.

■ RESULTS
We chose to study the aggregation of the 27th immunoglobu-
lin-like domain from human cardiac titin, which rapidly forms
aggregates in 28% trifluoroethanol (TFE).18 These aggregates
show extensive beta-sheet formation, as determined by far-
ultraviolet circular dichroism spectroscopy (Figure S6, Support-
ing Information), and produce an X-ray diffraction pattern that
is consistent with a cross-beta structure. They also bind
Thioflavin T and show red/green birefringence upon staining
with Congo Red.18 The TFE-induced aggregates thus show
“characteristics of amyloid fibrils and their precursors”, as
mentioned previously.18 However, the samples lack the long
straight character of mature amyloid fibres, as judged by TEM
experiments (Figure S1, Supporting Information), and are
more similar in morphology to the previously described p53
“amorphous” aggregates observed by Fersht and co-workers.19

As we show later, the kinetics of aggregate formation also
indicate a mechanism controlled by surface area, and are
inconsistent with a linear polymerization model. The I27
aggregates remain amorphous over long time scales and exhibit
no evidence of rearrangement to mature fibrils, even after four
months, (CF Wright, PhD Thesis, University of Cambridge,
2004), which contrasts with observations of other amorphous
protein aggregates such as protein L and prion protein H1.12,20

In keeping with previous experiments, we use turbidity at 400
nm as a measure of the degree of protein aggregation because
this is compatible with the fast mixing times and rapid data
collection of standard stopped-flow instruments. Although
several papers have questioned the accuracy of such data,21−23

turbidity measurements have proven to be reproducible, have
given much insight into many aggregation processes,15,24−26

and usually coincide with data from intrinsic tryptophan
fluorescence, thioflavin T binding, and light scattering.27

Moreover, kinetic studies on the Sup35 prion protein have
shown that simple spectroscopic techniques, such as light
scattering and circular dichroism, (CD), give aggregation rates
that are in excellent agreement with end-point analyses such as
sedimentation and dye binding.28 Nevertheless, we recognize
that turbidity is not linear with aggregate concentration (Figure
S2, Supporting Information) and thus, rather than using the
scaling method of Flyvbjerg et al.,25 we produced detailed

calibration curves to directly relate the turbidity measurements
to the quantity of aggregate in the sample.
I27 protein was produced as described elsewhere18 and, after

purification, was used to calibrate the stopped-flow machine, as
described in Materials and Methods. As expected, there was
significant nonlinearity between turbidity measurements and
aggregate concentration (Figure 1). We considered the fact that

this nonlinearity may be due to changes in aggregate size and/
or morphology as a function of initial protein concentration. To
address this point, we aggregated three different protein stocks
at 1, 4, and 8 mg mL−1. Each stock was then quickly
concentrated and diluted to create a range of protein solutions
from 0.1 to 8 mg mL−1. All three stock solutions showed
identical calibration curves (Figure S3, Supporting Information,
performed on a plate reader for speed), indicating that there is
no discernible difference in aggregate size and/or morphology
between the samples. We thus attribute the nonlinearity in both
machines (stopped-flow and plate reader) to the instrumental
setup and not to the aggregation conditions.
We repeated the measurements described by Wright et al.18

under the same solution conditions but using a stopped-flow
instrument rather than a plate reader to allow for an accurate
determination of the lag times. I27 aggregation was followed at
nine different concentrations, ranging from 0.48 mg mL−1 to
7.59 mg mL−1 (Figure 2). As expected, there is a linear
correlation between the initial protein concentration and the
final concentration of aggregate (data not shown). We then
examined the aggregation traces for any mechanistic insights
and discovered three interesting features:

1. At Short Time Scales, the Concentration of
Aggregate (CA) Scales with Time Cubed. In contrast to
previous findings, which suggest that aggregate concentration
should scale with time squared,5,8,20 we find that CA ∝ t3 at
short time scales (Figure 3A). A linear fit to these data gives
two parameters: the initial slope (gradient) and the lag time (tlag,
x-intercept). The initial slope is strongly dependent on the
initial protein concentration (C0), but the lag time varies
significantly less (Figure S4, Supporting Information). This

Figure 1. Calibration curve of turbidity (OD400) versus aggregate
concentration (CA) derived from the stopped-flow instrument. Red
and blue points represent two separate data sets. The curves were fit
with the equation CA = a × OD400 + b × (OD400)

c giving the
parameters a = 1.047, b = 0.126, and c = 5.523. This equation was then
used to convert all subsequent turbidity measurements into aggregate
concentrations.
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behavior is reminiscent of a batch crystallization regime, where
the initial rate of growth scales with the surface area (SA) of the
solid (dCA/dt ∝ SA ∝ CA

2/3).
2. At Long Time Scales, the Rate of Aggregation Is

Hyperbolic. Once the aggregation data has been appropriately
scaled, it is clear that the long-time stopped flow data do not
follow single exponential kinetics. Indeed, a plot of aggregate
concentration (CA) against 1/t gives a straight line, suggesting
hyperbolic behavior (Figure 3B). Mechanistically, this hyper-
bolic behavior suggests a second-order process, such as
dimerization, as being rate limiting. A linear fit to these data
gives two parameters: the apparent second-order rate constant
(kapp

∞, gradient) and the apparent equilibrium concentration of
aggregate (CA

∞, y-intercept). It is interesting (and initially
puzzling) to note that this apparent second-order rate constant
(kapp

∞) varies with initial protein concentration (Figure S5,
Supporting Information).

3. The Apparent Equilibrium Concentration of
Aggregate, CA

∞, Is Consistently Lower Than C0. It is
well-known that many aggregation reactions are reversible, and
that a constant amount of soluble protein often remains after
aggregation has gone to completion.29−31 However, for all I27
aggregation traces, the extrapolated end-point from the stopped
flow data (CA

∞) indicates the presence of substantially more
soluble protein than is expected from long-term equilibrium
measurements. To address this discrepancy, we followed the
aggregation of a 2.0 mg mL−1 solution of I27 over a one-week
period. Because very long time scale turbidity measurements
are hampered by the settling of aggregate, the measurements
quantified the concentration of soluble protein remaining,
rather than the concentration of aggregated protein. These
experiments revealed that the I27 aggregation took days to
reach equilibrium, but that a constant concentration of protein
remained soluble at the end of the experiment (Figure 4).

Interestingly, this decay also showed hyperbolic behavior,

indicating that a second-order process may be rate limiting in

Figure 2. Aggregation kinetics of I27 in 28% TFE. The aggregate
concentration (CA) was measured over time for nine initial
concentrations (C0) of I27: 0.48 mg mL−1 (purple), 0.68 mg mL−1

(magenta), 0.94 mg mL−1 (blue), 1.34 mg mL−1 (cyan), 1.89 mg mL−1

(green), 2.69 mg mL−1 (yellow), 3.66 mg mL−1 (beige), 5.25 mg mL−1

(orange), 7.59 mg mL−1 (red). Raw absorbance data were converted
to CA using the calibration curve as described in Figure 1.

Figure 3. I27 aggregation at an initial protein concentration (C0) of 1.89 mg mL−1. (A) A plot of aggregate concentration (CA) against t3

demonstrates a linear relationship at short time scales (less than 10% aggregate). The linear fit determines the initial slope and the lag time, tlag. (B) A
plot of aggregate concentration (CA) against 1/t demonstrates a linear relationship at long time scales (greater than 50% aggregate). The linear fit
determines the apparent second-order rate constant (kapp

∞) and the apparent equilibrium concentration of aggregate (CA
∞). The error bars denote

the errors on both the initial turbidity measurement and the conversion of the raw data to CA.

Figure 4. The concentration of soluble protein (C) remaining over an
extended aggregation time course (1 week) for C0 = 2 mg mL−1. The
red line shows a hyperbolic fit to the data with an apparent rate
constant of 4.8 × 10−4 mg−1 mL s−1.
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the very long time scale regime. This “double decay” in soluble
protein has been seen previously,12,20,32 and in each case it was
shown to be due to the presence of an off-pathway species that
slowly converted back to on-pathway aggregates.
On the basis of these observations, we devised the reaction

scheme as described in Figure 5. The important features of this

model are that (i) aggregates do not form until the
concentration of activated dimer reaches a saturation
concentration, (ii) aggregates grow by incorporation of dimer
(not monomer) at a rate proportional to the aggregate surface
area, (iii) the protein aggregate behaves as a soluble solid so
that at very long times a constant concentration of soluble
protein is found, and (iv) there are two non-native monomeric
species, only one of which is aggregation competent. The rate
laws resulting from this model are described in Table S1,
Supporting Information. We note that our model requires a
simple lumping approximation to relate aggregate mass and
surface area, which states that the number of aggregates does
not change significantly with time: the consequence of this
assumption is discussed below. It is also important to note that
this scheme contains no explicit nucleation event. The lag time
is simply a consequence of the time required for the protein to
unfold and form sufficient activated dimer to reach its solubility
level.
To fit the data, the protein folding rate constant in 28% TFE

(kF) was set as zero, and the remaining seven rate constants
were reconfigured to give the following variables: kU, the
protein unfolding rate constant in 28% TFE; k1,1, the
dimerization rate constant; K1,1, the equilibrium constant for
dimerization; k−C, the conversion rate constant for MI to MC;
kC, the conversion rate constant for MC to MI; kA,L, the
“lumped” aggregation rate constant, and CS, the saturation

Figure 5. The proposed reaction mechanism for amorphous
aggregation of I27 in 28% TFE. N is the natively folded protein, MC
is the aggregation-competent unfolded monomer, and MI is an
unfolded state, which is not aggregation-competent (incompetent). D
is a dimer, formed from two units of MC, and A is aggregate. kU and kF
are the rate constants for unfolding and folding of N; k1,1 and k−1,1 are
the forward and reverse rate constants for dimerization of MC to D; kA
and k−A are the forward and reverse rate constants for aggregation (of
D); and kC and k−C are the forward and reverse rate constants for the
conversion of MI to MC.

Figure 6. Fit of the model for C0 = 1.89 mg mL−1. The concentration of aggregate (CA) is plotted in black (for clarity error bars are not plotted for
every point), with model fits displayed in red. (A) Fit of stopped-flow data. (B) Concurrent fit of the stopped-flow data and the long time scale
solubility results (data: green triangles; fit: blue dashed line). (C) Plot of CA vs t

3. (D) Plot of CA vs 1/t. In C and D, thin blue lines are linear fits to
the data (as described in the text).
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concentration of dimer (for further details, see Table S2,
Supporting Information).
The rate constant for I27 unfolding in 28% TFE was

measured using circular dichroism (Figure S6, Supporting
Information) and was found to be in excellent agreement with
that found from tryptophan florescence (data not shown). In
addition, the very long time scale solubility results were used to
fix the final concentration of soluble protein (C* = MI + MC +
D) at 0.113 mg mL−1. This left five independent variables,
which were fit to the experimental data using a chi-square
minimization approach with a purpose-built Mathematica
package, ODEFit. Chi-square was estimated from the residual
square error and the observed uncertainty in the measured data.
ODEFit adjusts the parameters to be estimated using a
Levenberg−Marquardt approach until the chi-square is at a
minimum.33,34 The uncertainty in the parameters was estimated
from the computed covariance matrix using the method
described by Press et al.35 This method of analysis is very
similar to the dynamic simulation approach used by programs
such as Global Kinetic Explorer.36

We started with a fit of the C0 = 1.89 mg mL−1 data set,
because it closely matched our 2 mg mL−1 long-time solubility
data. We note that our model describes the experimental data
very well (Figure 6A): it captures the initial linear dependence
of aggregate concentration with t3 (Figure 6C), the later
second-order behavior (Figure 6D), and the very slow final
approach to equilibrium (Figure 6B). The kinetic parameters
for this fit are summarized in Table 1. We next used these

kinetic parameters to simulate I27 aggregation at all other initial
protein concentrations. The emergent behavior from the
simulated fits was compared to that from the experimental
data and was found to be in excellent agreement (Figure 7).
Although this model produced an excellent fit to all data sets,

it was not possible to obtain a single set of kinetic parameters
that described all protein concentrations; however, each
parameter was of a constant order of magnitude (Table S3,
Supporting Information). The probable reason for this
discrepancy is the use of the simple “lumping” assumption,
which states that the number of aggregates does not change
significantly with time and is independent of the initial protein
concentration. The lumped aggregation rate constant, kA,L, is
therefore not a true molecular rate constant because it depends
on the concentration of nuclei, which may change with both

initial protein concentration and with time. To avoid this
lumping assumption, it would be necessary to model kinetics
and rate laws for the growth of each oligomer as a series of
polymerization reactions. This necessitates the inclusion of
literally thousands of extraordinary differential equations
(ODEs) which, in the absence of information on the molecular
weight distribution of the aggregates, resulted in untestable
complexity. Nevertheless, it is important to stress that our
model is able to accurately predict the trends in the aggregation
profiles (Figure 7), even if the absolute numbers show a slight
discrepancy.
To check whether our model was the best solution for I27

aggregation, we also tested two alternate reaction schemes.
First, several papers on the aggregation of immunoglobulin-like
domains have suggested that the off-pathway species may be
dimeric37 or octameric.38 We thus modified the model (Figure
5) so that the nucleation incompetent species (MI) was
dimeric. In this case, the model was discounted because the
resulting kinetic parameters varied by several orders of
magnitude between each experimental data set, although the
errors of the fit were comparable (data not shown). Second, we
also tested a linear polymerization model as described by
Powers and Powers,8 because this represents one of the most
commonly proposed schemes for fibrillar protein aggregation.4

In this case, the fits were comparable to our surface-area
controlled model, with fairly robust kinetic parameters between
data sets. Thus, to distinguish between these two models, we
used speciation data provided by earlier TEM experiments.18 A
standard aggregation experiment at 2 mg mL−1 produced
aggregates with a typical raidus of about 1 μM. Assuming
spherical aggregates (as with our proposed model), this predicts
around 290 million aggregates per milliliter of solution. If this
number does not vary during the course of the experiment (a
valid assumption, because aggregation is much faster than
nucleation), then the aggregates would be approximately 150
nm radium (300 nm diameter) at the end of the observable lag
phase. This number is determined from the calculated amount
of aggregate at 90 s (Figure S7A, Supporting Information) and
is entirely consistent with the stopped-flow data. In contrast, a
fit of the linear polymerization model to the 1.89 mg mL−1 data
set (Figure S7B) would predict a final average aggregate size of
around 25 monomers, or 75 nm, which is far short of the 1−2
μM aggregates seen by TEM. Moreover, almost 100% of the
aggregate is predicted to exist as nuclei (tetramers) until about
200 s (Figure S7B). Such species (∼12 nm) are far too small to
significantly absorb light at 400 nm, and therefore the linear
polymerization model was discounted because it is incompat-
ible with the turbidity response from the stopped-flow machine.
These inconsistencies could potentially be addressed by
separating the nucleation and aggregation rate constants, but
this extra variable makes the linear polymerization model more
complex than our proposed model and the overparameteriza-
tion does not allow Mathematica to converge to a robust
solution.
Our simulations predict that the major component of the lag

time is the time taken for the protein to unfold and to develop a
saturation concentration of activated dimer. To verify this
hypothesis, we conducted experiments where the I27 protein
was incubated in 56% TFE, prior to 1:1 mixing in the stopped-
flow (giving “standard” aggregation conditions of 28% TFE,
1xPBS). In 56% TFE the protein is ‘unfolded’ (as judged by
fluorescence and CD), but remains monomeric and does not
associate (as judged by analytical size exclusion chromatog-

Table 1. Kinetic Parameters from a Fit of the Model to Data
Where C0 = 1.89 mg/mL

parameter value source

kU (s−1) 4.0 ± 0.4 × 10−3 a
k−C (s−1) 3.83 ± 0.04 × 10−3 b
kC (s−1) 6 ± 4 × 10−4 c
k1,1 (mg

−1 mL s−1) 1.73 ± 0.04 × 10−2 b
kA,L (mg

−2/3 mL2/3 s−1) 0.82 ± 0.05 × 10−2 b
CS (mg mL−1) 2.7 ± 0.2 × 10−5 b
C* (mg mL−1) 0.113 ± 0.001 c
K1,1 (mg mL−1) 0.115 d
k−1,1 (s

−1) 0.150 d
aObtained from fits of fluorescence unfolding. bObtained from a fit to
the stopped-flow data where C0 = 1.89 mg mL−1 (Figure 6B).
cObtained from a fit to the solubility data where C0 = 2.0 mg mL−1

(Figure 4). dDerived from the other kinetic parameters using eq 1: K1,1
= [CS(k−C

2 + 2k−CkC + kC
2 )]/[(CS − C*)2kC

2 ].
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raphy). These experiments showed no discernible lag phase for
aggregation (Figure S8A, Supporting Information), suggesting
that it is indeed protein unfolding that limits aggregation
initiation. This finding agrees with previous assertions that true
nucleation events should be stochastic in nature,23,27 and
provides a contrasting explanation for the physical basis of the
aggregation lag time. As a final check of the mechanism, we
sought to elucidate whether the disappearance of the lag phase
was simply due to the fast reconfiguration times of unfolded
protein, or whether aggregation proceeded from a specific
monomeric TFE unfolded state. We started with alkali-
unfolded protein, and neutralized it 1:1 with acidic TFE to
give the standard reaction conditions (28% TFE, 1X PBS). In
these experiments, there is a short lag phase (Figure S8B),
although it is substantially shorter than for the “native”
experiments (∼5 s versus ∼80 s at C0 = 2 mg mL−1). This
suggests a necessary fast transition from the alkali unfolded
state to a more structured (helical) TFE state, which is required
for dimerization and hence aggregation to occur.

■ DISCUSSION

The aggregation data were used directly to build the model as
shown in Figure 5: the hyperbolic behavior at long and very
long time scales indicated a rate limited by dimerization, the t3

dependence at short time scales indicated a reaction controlled
by surface area, and the very long time scale data indicated the
presence of an off-pathway, aggregation-incompetent species.

We built the simplest mechanistic scheme possible that
contained these features, and note that the deviation of the
fit from the experimental results is exceptionally low (Figure
6B). Moreover, the kinetic parameters of this model are capable
of predicting how the emergent trends, such as lag time, vary
with the initial concentration of protein (C0, Figure 7).
From our results, it is clear that the I27 domains must unfold

before they can aggregate. The model also illustrates that,
because the amorphous aggregates behave as soluble solids, the
aggregation is reversible and will only occur above a critical
threshold of activated soluble species. Thermodynamically
stable proteins are thus unlikely to aggregate in vivo, as they
maintain a very low concentration of unfolded forms.
Importantly, we observe that the rate constant for unfolding
is a key component of the lag time, which cannot be ignored in
the analysis of aggregation kinetics. Here the unfolding half-
time of I27 is ∼180 s, leading to a short but discernible lag time.
However, slower unfolding rate constants should correlate with
substantially longer lag times.
We have also used the model to investigate the evolution of

each molecular species with time (Figure S7). This reveals that
the concentration of activated dimer is always extremely low,
because it converts rapidly to aggregate or dissociates to
monomer, which explains why this species cannot be directly
observed in any experiment. Importantly, it is the activated
dimer (and not the monomer) that adds to the aggregate’s
surface. This clearly distinguishes this amorphous aggregation

Figure 7. Initial concentration (C0) dependence of the four emergent characteristics of the aggregation data: (A) the lag time, tlag; (B) the initial
slope; (C) the apparent equilibrium aggregate concentration, CA

∞; (D) the apparent second-order rate constant, kapp
∞. The simulations (red lines)

are in excellent agreement with the experimental data (black circles).
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from fibril formation, which apparently proceeds by the
addition of monomers to fibril ends. Aggregation via the
addition of activated oligomers has already been shown for the
yeast prion protein, in a mechanism called nucleated conforma-
tional conversion.28 Interestingly, of the two different
monomeric, non-native forms, only one is aggregation
competent. This has been seen several times before, especially
for the amorphous aggregation of immunoglobulin-like
domains.12,20,32,39 The fact that I27 aggregation occurs from a
specific, TFE-induced structure is reminiscent of recent work
on the p53 core domain, which demonstrated that aggregation
from the apoprotein is substantially faster than aggregation
from the holo-protein.40 It also agrees with observations that
the stabilization of partly folded intermediate states causes
increased aggregation in proteins such as transthyretin (TTR)
and lysozyme.41,42 Here, the sequestering of non-native protein
into an aggregation-incompetent species (MI) is a kinetic effect,
and over long time scales the population of this species
decreases as it rearranges, dimerizes, and aggregates (Figure
S7). Because the very long time scale solubility results show a
hyperbolic decrease, it can be assumed that the dimerization
step is still rate limiting in this regime. Assuming a fast pre-
equilibrium between MI and MC, and fast postequilibrium
between D and A, this long-term rate constant simplifies to kobs
≈ k11 × (kC/k−C)

2. The value obtained from a direct hyperbolic
fit (4.8 × 10−4 mg−1 mL s−1, Figure 4) is extremely close to the
calculated value from the kinetic parameters (4.7 × 10−4 mg−1

mL s−1, Table 1), lending further credibility to our model. It is
interesting to note that the initial fraction of soluble protein
found as MI increases as the concentration decreases and, at
equilibrium, over 90% is found in this form.
The largest variation between the model and the

experimental data is in the behavior of the initial slope
obtained from the C0 vs t

3 plots (Figure 7B). We attribute this
discrepancy to the use of a “lumped” aggregation rate constant,
which does not account for a variation in the number of
aggregation nuclei, n, with increasing initial concentration, C0.
The discrepancy can be accounted for by observing that the
model fits if n ∝ C0

2.6±0.4. This relationship suggests that
aggregation does not occur via external nucleation (e.g.,
nucleation by dust particles), because this would be
independent of the initial protein concentration giving an
index of 0. Nor does aggregation occur via preformed I27
nuclei, where n should be directly proportional to C0. Instead,
the observed index is most consistent with a series of sequential
chemical reactions, such as two activated dimers associating to
form a stable nucleus, as we propose.
As mentioned previously, the initial stages of the amorphous

aggregation are reminiscent of batch crystallization regimes
where the rate is dominated by the aggregate surface area. This
idea has been explored thoroughly by Finke and co-work-
ers16,17,43 who propose a mechanistic scheme whereby
“continuous nucleation is followed by typically fast, autocata-
lytic surface growth”. They have used this scheme to
successfully fit over 40 different sets of aggregation data, from
many different proteins and from several different research
groups. Although highly successful, the authors themselves
admit that “the [Finke−Watzky] two-step mechanism is
obviously a highly condensed, oversimplified, phenomenolog-
ical model of the real protein agglomeration that often consists
of probably hundreds if not thousands of steps”. In this paper,
we have independently derived a mechanistic scheme that both
agrees with, and enhances, this simple model. Both models are

based on the idea that the surface area of the aggregate
determines the aggregation rate; however, where the Finke−
Watzky mechanism makes no predictions about how this value
relates to the quantity of aggregate, we are able to show that the
surface area is proportional to the mass-concentration of
aggregate to the power 2/3 (CA

2/3). In addition, a fit to the
Finke−Watzky mechanism would not have deduced the
presence of the activated dimer (D) nor the aggregation
incompetent monomer (MI). It would also have been unable to
account for the soluble protein remaining at the end of each
aggregation reaction (which is explained in our model by the
dimer solubility, CS).
Amorphous aggregates have been reported to play a role in

the formation of amyloid fibres from the prion protein,12 and
conversion between amorphous and amyloid aggregate
morphologies has been previously been suggested for the
similarly structured immunoglobulin domains.44,45 It is there-
fore reasonable to question whether the TFE-induced
aggregates of I27 are the thermodynamically most stable
species, or whether they may be on-pathway intermediates for
amyloid formation. While I27 has been observed to form
amyloid fibrils under alternative reaction conditions, (CF
Wright, PhD Thesis, University of Cambridge, 2004), we can
state categorically that under the conditions used within this
study, (28% TFE, 1x PBS), we saw no evidence of conversion
from amorphous aggregate to a typical fibrillar amyloid within a
timescale of at least 4 months. The mechanistic model that we
have derived is thus applicable to the amorphous protein
aggregation of immunoglobulin-like domains. We make no
assumptions about what may or may not happen over very long
timescales.

■ CONCLUSION
Although our exact mechanistic scheme is unlikely to be
applicable to all aggregating protein systems, it is likely that
other proteins share some of the features of aggregation
observed in this immunoglobulin domain, such as the presence
of aggregation-incompetent species and/or a surface area rather
than a linear polymerization dependence. Moreover, the
methods of data collection, instrument calibration, and analysis
that we have used should be generally applicable to all
aggregating protein systems. It is important to note that, had
we used and presented normalized aggregation data (which is
unfortunately common practice), we would not have deduced
the existence of the nucleation incompetent (misfolded)
species. We would have missed the hyperbolic behavior of
the aggregation traces and would have reported inaccurate
kinetic rate constants for the amorphous aggregation of I27
domains. This work also highlights the importance of studying
aggregation profiles at a range of different protein concen-
trations to distinguish between similar mechanisms that that are
equally good at fitting individual data sets, a point that has been
experimentally demonstrated more than once.19,27

Finally, we would like to stress that although turbidity is not
linearly proportional to aggregate concentration, by careful
calibration of the optical instruments it is possible to collect
highly quantitative, concentration-dependent kinetic data for
the process of amorphous aggregation. Our model succeeds in
capturing all of the features of the aggregation data and
describes the amorphous aggregation in as yet unmatched
detail. The significance of such a model is that we are now in a
position to ask which steps of the mechanism are affected by
changes in the system (such as point mutations and solvent
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conditions). A full mutagenic study will be able to separate the
residues responsible for unfolding, misfolding, dimerization,
and aggregation. Furthermore, it should be possible to
interrogate the model to uncover the modes of action of
small molecule inhibitors of I27 aggregation.

■ MATERIALS AND METHODS
Protein was produced as described previously.46 Buffering was
achieved using phosphate-buffered saline (PBS) pH 7.4 in all
experiments. Protein unfolding data were analyzed with KaleidaGraph
software (Synergy Software, Reading, PA). CD spectra of I27
aggregating at 0.3 mg mL−1 in buffered 28% TFE were recorded on
a Jasco J-810 spectropolarimiter (scan from 280 to 200 at 0.5 nm s−1,
25 °C, 1 mm path length). Unfolding of I27 (<0.1 mg mL−1) in
buffered 28% TFE was monitored by following the loss of fluorescence
at 320 nm with excitation at 280 nm on a Perkin-Elmer LS-55
luminescence spectrophotometer (25 °C, 1 cm path length, 5 mm slit
widths). Unfolding was initiated by manually mixing one volume of
protein with 10 volumes of buffered 28% TFE, with an average dead
time from mixing to data acquisition of 5 s. Traces were averaged and
fit with a single exponential to give an unfolding rate of 4.0 × 10−3 s−1.
Aggregation profiles were collected by measurement of absorbance

at 400 nm (turbidity) on an Applied Photophysics stopped-flow
spectrophotometer at 25 °C. Native protein in 1X PBS was mixed
rapidly in a 1:1 ratio with buffered 56% TFE solution, achieving
aggregation conditions of PBS-buffered 28% TFE. Measurements were
performed for 2000 s. The absorbance signal was blanked before each
experiment with all components except the protein. The machine was
thoroughly cleaned between each run with 2% Hellmanex II solution
(Hellma Gmbh, Germany) followed by copious amounts of Milli-Q
water. Data were collected for nine different initial concentrations of
protein, with three repeats at each concentration. The raw data traces
were averaged and then converted from raw signal into concentration
of aggregate using eq 2, which was obtained from the instrument
calibration curve (see below).

= × + ×C 1.047 (OD ) 0.126 (OD )A 400 400
5.523

(2)

The very long time scale measurements were performed for
aggregation reactions of I27 at 2 and 4 mg mL−1 in buffered 28% TFE
at 25 °C. A 100 μL aliquot was removed periodically, the aggregate
was pelleted by centrifugation at 17 000g for 35 min, and the
concentration of protein in the soluble fraction was determined by
absorbance at 280 nm.
Instrument Calibration. A calibration curve of the stopped-flow

instrument was produced to allow for accurate conversion of the
OD400 absorbance signal into a quantitative concentration of
aggregated I27. Two concentrated solutions of I27 in buffered 28%
TFE (15.96 mg mL−1 and 16.4 mg mL−1) were left to aggregate for 24
h at 25 °C. The concentration of aggregated protein was then
calculated from the known solubility in the long time scale
measurements. A series of dilutions was made from each concentrated
stock by dilution with buffered 28% TFE, and the OD400 readings of
these solutions were measured in the stopped-flow spectrophotometer
after 1:1 rapid mixing with buffered 28% TFE. Every solution was
measured twice, and the experiments were performed quickly (control
experiments at all I27 concentrations used herein show no significant
re-equilibration of the aggregate with the solvent within 2 h). The
resulting data were fit to the equation CA = a × OD400 + b × (OD400)

c

to obtain the parameters a, b, and c (see eq 2).
Fitting of Data to the Model. The model was fitted to the data

using a weighted least−squares (chi-square) method. The weights
were calculated from the estimated errors in each data point which in
turn were calculated from the measured errors in absorbance modified
by the nonlinearity of eq 2. The least-squares fit was performed in
Mathematica 7.0 (Wolfram, Champaign, IL) using an in-house
package ODEFit which searches over the parameter space using the
in-built function FindMinimum. For each set of parameters, the inbuilt
function NDSolve is used to integrate the ordinary differential

equations (ODEs) in Table S2, Supporting Information, allowing chi-
square to be calculated.
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